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Abstract 
 

A heterogeneous continuum model is proposed to describe the dispersion of a dense 
Aluminum particle cloud in an explosion. Let 

€ 

α1 denote the volume fraction occupied 
by the gas and 

€ 

α2  the fraction occupied by the solid, satisfying the volume 
conservation relation: 

€ 

α1 +α2 =1. When the particle phase occupies a non-negligible 
volume fraction (i.e., 

€ 

α2 > 0), additional terms, proportional to 

€ 

α2 , appear in the 
conservation laws for two-phase flows. These include: (i) a particle pressure (due to 
particle collisions), (ii) a corresponding sound speed (which produces real eigenvalues 
for the particle phase system), (iii) an Archimedes force induced on the particle phase 
(by the gas pressure gradient), and (iv) multi-particle drag effects (which enhance the 
momentum coupling between phases). These effects modify the accelerations and 
energy distributions in the phases; we call this the Dense Heterogeneous Continuum 
Model. A characteristics analysis of the Model equations indicates that the system is 
hyperbolic with real eigenvalues for the gas phase: {

€ 

v1, v1 ± a1} and for the “particle 
gas” phase: {

€ 

v2, v2 ± a2} and the particles: {

€ 

v2}, where 

€ 

vi and 

€ 

ai denote the velocity 
vector and sound speed of phase i. These can be used to construct a high-order 
Godunov scheme to integrate the conservation laws of a dense heterogeneous 
continuum. 

 
1. Introduction 

A dense heterogeneous continuum model is proposed to describe the initial stages of the 

dispersion of Aluminum (Al) particle clouds by a booster charge. This is an extension of a 

dilute heterogeneous continuum model we have used successfully to describe Al particle 

combustion in Shock-Dispersed-Fuel (SDF) explosions [1, 2].  

We start by defining the volume fraction, 

€ 

α i ≡ v i /V , of the volume V occupied by the gas 

(subscript 1) and particle phase (subscript 2). They satisfy the volume conservation relation: 

    

€ 

α1 +α2 =1       (1) 

According to Nigmatulin [3], when the particle phase occupies a non-negligible volume 

fraction (i.e., 

€ 

α2 > 0), additional terms appear in the conservation laws of two-phase flows: 

• A particle pressure:

€ 

p
2
(α2)  due to particle collisions 

• A sound speed: 

€ 

a2(α2)  which produces real eigen-values for the particle phase system 

• An Archimedes force: 

€ 

α2∇p1  induced on the particle phase by the gas pressure gradient 

• And multi-particle drag coefficient: 

€ 

CD (Re,α2), enhancing coupling between phases 
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These effects modify the accelerations and energy distributions in the phases; we call this the 

dense heterogeneous continuum model. The formulation of the model is described in §2. The 

conservation laws governing a dense heterogeneous continuum are presented in §3; this is 

followed by inter-phase interaction modes in §4. A summary of the characteristics analysis of 

this two-phase hyperbolic system is presented in §5. This is followed by conclusions in §6. 

For convenience of the reader, the notation is defined in Appendix A. More details of the 

characteristics analysis is presented in Appendix B. 

2. Formulation 

We assume that the particle phase behaves as a dense heterogeneous continuum. We 

view it as a particle gas (analogous to a molecular gas) that, according to kinetic theory [4, 5], 

contains a particle pressure, 

€ 

p2, temperature, 

€ 

T2 , and energy, 

€ 

e2, due to particle collisions: 

    

€ 

p2 ≡
1
3
m
V

C2        (2) 

    

€ 

T2 =
1
3
m
k
C2        (3) 

    

€ 

e2 =
1
2
C2        (4) 

These depend on the mean kinetic energy of the particles 

€ 

C2 , where C denotes the particle 

speed, m its mass while V is volume. Based on Nigmatulin [3], we model the particle pressure 

by the compaction pressure relation: 

    

€ 

p2(α2) = p2,0
α2

α2
* −α2

 

 
 

 

 
 

χ

     (5) 

where 

€ 

α2
* ~ 0.5 and 

€ 

χ = 5 /3 (hard sphere model). Then we define the energy of the particle 

phase from the First Law of Thermodynamics applied to this adiabatic system: 

    

€ 

de2 = −p2dV        (6) 

In addition, particles can store energy, 

€ 

es, due to the thermal heat capacity of the solid: 

    

€ 

es(Ts) = cv,sTs       (7) 

where 

€ 

Ts  is the temperature of the solid particle and 

€ 

cv,s is its specific heat. Once could call 

this a 2-temperature model of the particle phase. How these terms affect the momentum and 

energy balance of the two-phase flow is described in the next section. 
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3. Conservation Laws 

3.1 Mass Conservation 

We assume that the density of the gas and particle phases may be described by Eulerian 

continuum functions: 

€ 

ρ1(x,t), and 

€ 

ρ2(x,t) . Their evolution per unit volume, is specified by 

the following mass conservation laws: 

• gas phase:  

€ 

∂tρ1 +∇ρ1v1 = j21       (8) 

• particle phase: 

€ 

∂tρ2 +∇ρ2v2 = − j21        (9) 

• mixture:  

€ 

∂tρm +∇ρmvm = 0                 (10) 

where the mixture density is 

€ 

ρm ≡ ρ1 + ρ2. The source term: 

€ 

j21 represents the mass exchange 

from the particle phase to the gas phase; a model of this mass interchange is specified in §4. 

The third relation (10) shows that, according to the formulation, the two-phase mixture 

conserves mass. The volume fraction of the particle phase, which will be needed in 

subsequent relations, is determined from the definition:  

€ 

α2 ≡ ρ2 /ρ2
0                (11) 

3.2 Momentum Conservation 

We assume that the momentum of the gas and particle phases may be described by 

Eulerian continuum functions: 

€ 

ρ1(x,t)v1(x,t) and 

€ 

ρ2(x,t)v2(x,t). Their evolution per unit 

volume, is specified by the following momentum conservation laws: 

• gas phase:  

€ 

∂tρ1v1 +∇(ρ1v1v1 + p1) = −α1
˙ f s + j21v2             (12) 

• particle phase: 

€ 

∂tρ2v2 +∇(ρ2v2v2 + p2 +α2p1) =α1
˙ f s − j21v2            (13) 

• mixture:  

€ 

∂tρmvm +∇(ρmvmvm + pm +α2p1) = 0            (14) 

where the mixture momentum and pressure are defined by the relations 

€ 

ρmvm ≡ ρ1v1 + ρ2v2 

and 

€ 

pm ≡ p1 + p2, respectively. For the gas phase, the pressure is determined from the perfect 

gas relation: 

€ 

p1 ≡α1p1
0 = ρ1R1T1             (15) 

along with the equation of state relation: 

€ 

T1 = u1
−1(T1) . The source term: 

€ 

˙ f s represents the drag 

force which accelerates the particle phase and depletes momentum from the gas phase. The 

source term: 

€ 

j21v2 represents the rate of momentum change induced by the mass exchange 

€ 

j21.  Note in eq. (13), that the particle phase momentum is influenced by gradient of the 

particle pressure: 

€ 

∇p2 , and by the gradient in the gas pressure (the so-called Archimedes 
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force): 

€ 

∇α2p1; here 

€ 

α2  represents the particle cross-sectional area loaded by the gas force. 

Being proportional to 

€ 

α2 , both these forces are absent in dilute heterogeneous systems 

(where 

€ 

α2 = 0). The third relation (3.8) shows that, according to the formulation, the two-

phase mixture conserves momentum. 

3.3 Energy Conservation 

We assume that the energy of the phases may be described by Eulerian continuum 

functions for the gas phase: 

€ 

ρ1(x,t)u1(x,t) , and for the particle phase: 

€ 

ρ2(x,t)e2(x,t)  and 

€ 

ρ2(x,t)es(x,t). The evolution of the gas phase is specified by: 

• gas phase:  

€ 

∂tρ1E1 +∇ ⋅ (ρ1v1E1 + p1v1) = − ˙ q s − ˙ f s ⋅ v1 + j21E2           (16) 

where 

€ 

E1 = u1(T1) + v1
2/2 denotes the total energy of the gas. It can loose energy by heat 

transfer to the solid particles: 

€ 

˙ q s and by drag work: 

€ € 

˙ f s ⋅ v1; and gain energy due to mass 

transfer: 

€ 

j21E2  from the solid phase.  

The evolution of the particle internal energy (IE), kinetic energy (KE), and thermal 

energy (TE) obey the following: 

• particle IE:  

€ 

∂tρ2e2 +∇ ⋅ (ρ2v2e2) + (p2 +α2p1)∇ ⋅ v2 = 0             (17) 

• particle KE:      

€ 

∂tρ2v2
2 /2 +∇ρ2v2v2

2 /2 + v2 ⋅ ∇(p2 +α2p1) = v2 ⋅α1
˙ f s − j21 v2

2          (18) 

• particle TE:  

€ 

∂tρ2es +∇ ⋅ (ρ2v2es) = ˙ q s − j21es             (19) 

The first represents a statement of the First Law of Thermodynamics, where the effective 

pressure: 

€ 

p2 +α2p1 does work to change the particle internal energy. The second represents a 

dot product of particle momentum equation (3.7) with 

€ 

v2 . The third represents heating of the 

solid particles by heat transfer from the gas: 

€ 

˙ q s, and losses due to mass transfer: 

€ 

j21es . A total 

energy equation of the particle phase, based on the definition: 

€ 

E2 = e2(α2) + v2
2/2, may be 

constructed by adding the IE and KE equations, yielding: 

• Total:  

€ 

∂tρ2E2 +∇ ⋅ (ρ2v2E2 + {p2 +α2 p1}v2) =  ˙ f s ⋅ v1 − j21E2          (20) 

This is analogous to the total energy conservation for the gas (3.11), and may be expected to 

have somewhat similar properties. Continuing along this same vein, one can construct a total 

energy conservation equation for the mixture: 

€ 

ρmEm ≡ ρ1E1 + ρ2E2 + ρ2es, yielding: 

• Mixture:   

€ 

∂tρmEm +∇ ⋅ (ρmvmEm + pmvm ) = 0              (21) 
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where the mixture pressure is defined by 

€ 

pmvm ≡ p1v1 + p2v2 +α2p1v2 . This shows that, 

according to the formulation, the two-phase mixture conserves energy. 

4. Inter-phase Exchanges 

Mass Interchange (from particle phase to gas phase) 

• particle  

€ 

j21 =
0                                     Ts < TL
3σ (1+ 0.276 Res ) / ts     Ts ≥ TL

 
 
 

     where  

€ 

ts = Kds
2           (22) 

Momentum Interchange:  

• drag force: 

€ 

˙ f s = CD (Re,α2) ⋅ (πa2ρ1
0w12

2 /2)w12 /w12   where  

€ 

w12 ≡ v1 − v2           (23) 

• single particle: 

€ 

Cµ
0 (Re) =

24
Re12

+
4.4
Re12

+ 0.42   where  

€ 

Re12 = ρ1
0 v1 − v2 /µ1          (24) 

• multi-particle: 

€ 

CD (Re,α2) = Cµ
0 (Re) ⋅ψα (α2)               (25) 

• porosity:  

€ 

ψα (α2) = [1−α2]
−m  where   

€ 

m ≅
5     (Re < 1)
2.7  (Re > 1)
 
 
 

            (26) 

Energy Interchange:  

• Heat Exchange: 

€ 

˙ q s =
6σ
ρsds

Nuλ1(T1 −T2)
ds

+ εσBoltz (T1
4 −T2

4 )
 

 
 

 

 
             (27) 

• Nusselt Number:  

€ 

Nu = 2 + 0.6Pr1 Re12    &   

€ 

Pr1 = Cp1µ1 /k1            (28) 

Particle Volume Effects on Drag Law 

• dilute: 

€ 

Cµ
(1)(Re12) =

24
Re12

+
4.4
Re12

+ 0.42       

€ 

α2 ≤ 0.08            (29) 

• dense: 

€ 

Cµ
(2)(Re12,α i) =

4
3α1

1.75 +
150α2

α1Re12

 

 
 

 

 
       

€ 

0.45 ≤α2 <α2
*           (30) 

• blend: 

€ 

Cµ
0 (Re12,α i) =

(α2 − .08)Cµ
(2) + (0.45 −α2)Cµ

(1)

0.37
    

€ 

0.08 ≤α2 ≤ 0.45            (31) 

5. Characteristics 

 A characteristics analysis [5] of the Dense Heterogeneous Continuum Model 

equations: (8)—(21) has been performed; an overview is outlined in Appendix B. Results of 

the analysis indicate that the Model equations are hyperbolic, with real wave speeds for both 

the gas and particle phases: 

• gas:   

€ 

v1, v1 ± a1                (32) 

•  “particle gas”:  

€ 

v2, v2 ± a2                 (33) 

• particle:  

€ 

v2                  (34) 
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along with corresponding sound speeds 

• gas:   

€ 

a1 =
γ1p1
ρ1

                (35) 

• particle gas:  

€ 

a2 =
1
ρ2
0
∂p2
∂α2

+ p1
 

 
 

 

 
                (36) 

These can be used to construct a high-order Godunov scheme to integrate the conservation 

laws for a dense heterogeneous continuum. 

6. Conclusions 

When one considers a finite volume of the particle phase (

€ 

α2 > 0), additional terms 

appear in the momentum and energy equations of two-phase flow, for example: particle 

pressure (and its corresponding sound speed), an Archimedes force, and multi-particle drag 

effects. We call this the Dense Heterogeneous Continuum Model. Characteristics analysis 

shows that this Model is hyperbolic, with real eigenvalues for the gas phase: {

€ 

v1, v1 ± a1} and 

for the “particle gas” phase: {

€ 

v2, v2 ± a2} and the particles: {

€ 

v2}. These can be used to 

construct a high-order Godunov scheme to integrate the conservation laws of a dense 

heterogeneous continuum. Such effects are expected to be important during the particle 

dispersion phase of SDF explosions, and we intend to explore the influence of these forces in 

future numerical simulations. 
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Appendix A: Notation 
 
1. Volume (cc) 

• gas:   

€ 

v1        (A.1a) 
• particle: 

€ 

v2         (A.1b) 
• mixture: 

€ 

v1 + v2 =V        (A.1c) 
 
2. Volume Fraction 

• gas:  

€ 

α1 = v1 /V        (A.2a) 
• particle: 

€ 

α2 = v2 /V  

€ 

0 ≤α2 <α2
*  &  

€ 

α2
* ~ 0.5   (A.2b) 

• conservation: 

€ 

α1 +α2 =1       (A.2c) 
 
3. True Density (g/cc) 

• gas:  

€ 

ρ1
0 = m1 /v1       (A.3a) 

• particle: 

€ 

ρ2
0 = m2 /v2 (solid density, constant)   (A.3b) 

 
4. Apparent Density (g/cc) 

• gas:  

€ 

ρ1 =
m1
V

=
m1
v1
v1
V

= ρ1
0α1    where 

€ 

α1 =1−α2  (A.4a) 

• particle: 

€ 

ρ2 =
m2

V
=
m2

v2
v2
V

= ρ2
0α2 ∴ 

€ 

α2 ≡ ρ2 /ρ2
0   (A.4b) 

• mixture: 

€ 

ρm =
m1 + m2

V
= ρ1 + ρ2     (A.4c) 

 
5. True Pressure (in volume 

€ 

v1) 

• gas:  

€ 

p1
0 = ρ1

0R1T1 =
1
α1
ρ1R1T1     (A.5a) 

6. Apparent Pressure (in volume V) 

• gas:  

€ 

p1 ≡α1p1
0 = ρ1R1T1      (A.6a) 

• particle: 

€ 

p2(α2) = p2,0
α2

α2
* −α2

 

 
 

 

 
 

χ

 where  

€ 

0 < χ < 2  &  

€ 

α2
* ~ 0.5 (A.6b) 

7. Sound Speed (in volume V) 

• gas:  

€ 

a1
2(T1) ≡

∂p1
∂ρ1

 

 
 

 

 
 
s

= γ1
p1
ρ1

= γ1R1T1     (A.7a) 

• particle: 

€ 

a2
2(α2) ≡

∂p2
∂ρ

 

 
 

 

 
 
s

=
1
ρ2
0
∂p2
∂α2

+ p1
 

 
 

 

 
     (A.7b) 

 

8. Specific Internal Energy (per unit mass) 
• gas:  

€ 

u1(T) = a1T1
2 + b1T1 + c1      (A.8a) 

• particle: 

€ 

e2 = − p2dv2∫        (A.8b) 
• solid:  

€ 

es = cv,sTs       (A.8b) 
 
9. Temperature 

• gas:  

€ 

T1 = [−b1 + b1
2 − 4a1(c1 − u1)]/2a1     (A.9a) 

• particle: 

€ 

T2 = f (α2)        (A.9b) 
• solid:  

€ 

Ts = es /cv,s        (A.9c) 
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Appendix B: Characteristic Analysis [6] 
 

Linearized Conservation Laws: 

€ 

U t+AUx = 0             (B.1) 
 

€ 

U =

ρ1

v1

T
1

ρ2

v2

e2

es

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

 ,   A =

v1 ρ1 0

RT1

ρ1

v1 R

0 RT1

cv1

v1

α2RT1

ρ2

0 α2ρ1R
ρ2

v2 ρ2 0 0

1
ρ2ρs

∂p2

∂α2

+ p1

 

 
 

 

 
 v2 0 0

0 p2 +α2p1

ρs
v2 0

0 0 0 v2

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   (B.2) 

 
The system is hyperbolic if A is diagonalizable with real eigenvalues, so that we can 
decompose A according to: 
 

€ 

A = RΛR−1              (B.3) 
 

€ 

R−1AR = Λ               (B.4) 
 

Eigenvalues:  

€ 

Λ =

v1
v1+ a1

v1− a1
v2

v2+ a2
v2− a2

v2

 

 

 
 
 
 
 
 
 
  

 

 

 
 
 
 
 
 
 
  

         (B.5) 

 
Wave Speeds 
 

• gas:   

€ 

v1, v1 ± a1              (B.6) 
 

• “particle gas”:  

€ 

v2, v2 ± a2               (B.7) 
 

• particle:  

€ 

v2                (B.8) 
 
Sound Speeds 
 

• gas:   

€ 

a1 =
γ1p1
ρ1

              (B.9) 

 

• particle gas:  

€ 

a2 =
1
ρ2
0
∂p2
∂α2

+ p1
 

 
 

 

 
            (B.10) 


